Teach To India

रासायनिक गतिकी एवं उपसहसंयोजन रसायन विज्ञान (सेमेस्टर -3)

रासायनिक गतिकी एवं उपसहसंयोजन रसायन विज्ञान : यह मॉडल पेपर यह सुनिश्चित करता है कि सभी संभावित प्रश्न जो परीक्षा ... Show more
Instructor
Teach To India
254 Students enrolled
0
0 reviews
  • Description
  • Curriculum
  • Reviews
Add a heading (20).png

Teach To India प्रकाशन

रासायनिक गतिकी एवं उपसहसंयोजन रसायन विज्ञान

  • यह मॉडल पेपर यह सुनिश्चित करता है कि सभी संभावित प्रश्न जो परीक्षा में आ सकते हैं, वे यूनिट में पूरी तरह से शामिल हैं, चाहे वे सीधे हों या अप्रत्यक्ष रूप से।

  • इसे अनुभवी प्रोफेसरों द्वारा बहुत सावधानी से तैयार किया गया है, जिन्हें परीक्षा मॉडल पेपर बनाने का व्यापक अनुभव है।

  • इस पेपर में विश्वविद्यालय द्वारा निर्धारित पाठ्यक्रम के आधार पर सभी मुख्य प्रश्न शामिल हैं।

  • 400 से अधिक प्रश्न और उत्तरों के साथ, यह मॉडल पेपर विषय का पूरा पाठ्यक्रम कवर करता है।

  • प्रत्येक यूनिट में दीर्घ उत्तरीय ,लघु उत्तरीय और अति लघु उत्तरीय वाले प्रश्न शामिल हैं ताकि छात्रों को गहन समझ प्राप्त हो सके।

  • हमारे प्रश्न इस तरह तैयार किए गए हैं कि प्रत्येक यूनिट को कम से कम और अच्छी तरह चुने हुए प्रश्नों से कवर किया जा सके।

  • अनिवार्य आंतरिक परीक्षा के लिए हम 200 एक पंक्ति के प्रश्न-उत्तर प्रदान कर रहे हैं, जो प्रत्येक यूनिट को समान रूप से कवर करते हैं।

  • इस मॉडल पेपर में मॉक प्रश्नपत्र / पिछले साल के प्रश्नपत्र भी हल के साथ दिए गए हैं, जिससे छात्रों को परीक्षा के प्रश्नों की गहराई और विस्तार को समझने में मदद मिलती है।

    Programme /Class: Diploma

    Year: Second

    Semester: Third

    Major Course

    Course Title: Chemical Dynamics & Coordination Chemistry

    Course outcomes:

    Upon successful completion of this course students should be able to describe the characteristic of the three states of matter and describe the different physical properties of each state of matter. kinetic theory of gases, laws of crystallography , liquid state and liquid crystals, conductometric, potentiometric, optical methods, polarimetry and spectrophotometer technique to study Chemical kinetics and chemical equilibrium. After the completion of the course, Students will be able to understand .metal- ligand bonding in transition metal complexes, thermodynamic and kinetic aspects of metal complexes.

     

    Credits: 4

    Elective

    Max. Marks: 25+75

    Min. Passing Marks: 8+25

    Unit

    Topics

    I

    Chemical Kinetics: Rate of a reaction, molecularity and order of reaction, concentration dependence of rates, mathematical characteristic of simple chemical reactions – zero order, first order, second order, pseudo order, half-life and mean life. Determination of the order of reaction – differential method, method of integration, half-life method and isolation method.

    Theories of chemical kinetics: Effect of temperature on rate of reaction, Arrhenius equation, concept of activation energy. Simple collision theory based on hard sphere model, transition state theory (equilibrium hypothesis). Expression for the rate constant based on equilibrium constant and thermodynamic aspects (no derivation ).

     

    II

     

    Chemical Equilibrium: Equilibrium constant and free energy, thermodynamic derivation of law of mass action. Le-Chatelier’s principle. reaction isotherm and reaction isochore – Clapeyron Clausius equation and its applications.

     

    III

    Phase Equilibrium: Statement and meaning of the terms-phase, component and degree of freedom, derivation of Gibbs phase rule, phase equilibria of one component system– water, CO2 and systems. Phase equilibria of two component systems – Solid – liquid equilibria , simple eutectic – Bi-Cd, Pb Ag systems.

     

    IV

    Kinetic theories of gases

    Gaseous State: Postulates of kinetic theory of gases, deviation from ideal behavior, van der Waals equation of state.

    Critical phenomena: PV isotherms of real gases, continuity of states, the isotherms of Van der Waals equation, relationship between critical constants and Van der Waals constants, the law of corresponding states, reduced equation of state.

    Molecular Velocities: Qualitative discussion of the Maxwell’s distribution of molecular velocities, collision number, mean free path and collision diameter.

     

    V

    Liquid State

    Liquid State: Intermolecular forces, structure of liquids (a qualitative description). Structural differences between solids, liquids and gases. Liquid crystals: Difference between liquid crystal, solid and liquid. Classification, structure of nematic and cholesterol phases.

    Liquids in solids (gels): Classification, preparation and properties, inhibition, general application

     

    VI

    Coordination Chemistry

    Werner’s theory of coordination complexes, classification of ligands, ambidentate ligands, chelates, coordination numbers, IUPAC nomenclature of coordination complexes (up to two metal centers), Isomerism in coordination compounds, constitutional and stereo isomerism, geometrical and optical isomerism in square planar and octahedral complexes.

     

    VII

    Theories of Coordination Chemistry

    I. Metal- ligand bonding in transition metal complexes, limitations of valance bond theory, an elementary idea of crystal field theory, crystal field splitting in octahedral, tetrahedral and square planner complexes, John teller effect, factors affecting the crystal-field parameters.

    II. Thermodynamic and kinetic aspects of metal complexes: A brief outline of thermodynamic stability of metal complexes, concept of hard and soft acids and bases and factors affecting the stability, stability constants of complexes and their determination, substitution reactions of square planar complexes

     

    VIII

    Inorganic Spectroscopy and Magnetism

    I) Electronic spectra of Transition Metal Complexes

    Types of electronic transitions, selection rules for d-d transitions, spectroscopic ground states, spectrochemical series, Orgel-energy level diagram for d1 and d9 states, discussion of the electronic spectrum of [Ti(H2O)6]3+ complex ion.

    II) Magnetic properties of transition metal complexes, types of magnetic behaviour, methods of determining magnetic susceptibility, spin-only formula, L-S coupling, correlation of µ s and µ eff values, orbital contribution to magnetic moments, application of magnetic moment data for 3d- metal complexes.

     

Share
Course available for 365 days
Course details
Lectures 10
Scroll to Top